Thermal studies of Cr_2O_3 doped $CaCO_3$ -SiO₂ (2:1) system

I. P. SARASWAT*, V. K. MATHUR[‡], S. C. AHULWALIA[‡] Department of Chemistry, University of Roorkee, Roorkee (UP), India

Mixtures of CaCO₃: SiO₂ in 2:1 molar ratio were subjected separated to thermal analysis with varying concentration of Cr₂O₃ (0.1 to 5%) as dopant. The activation energy (E_a) and enthalpy (ΔH) shows a decreasing trend with 0.1 to 1% Cr₂O₃ and attains a minimum value with 1% dopant. 0.1 to 0.5% Cr₂O₃ helps in the formation of β and γ C₂S, (Cement Chemistry notations, C = CaO, S = SiO₂) phases at 1400° C and above but 1% Cr₂O₃ stabilizes β -C₂S phase along with a little free lime and CaCrO₄. A small quantity of CaCrO₄, Cr₂SiO₄ and α -C₂S are also formed along with the major phases with 5% Cr₂O₃ indicating that Cr³⁺ can substitute both Ca²⁺ and Si⁴⁺ ions in the C₂S lattice.

1. Introduction

The effect of minor constituents on the structural properties of portland cement clinker has been the subject of interest for many years [1–6]. The effects of Cr_2O_3 on the early strength development have been reported [7–9]. Investigations on the effect of Cr_2O_3 on the formation of di- and tri-calcium silicate phases have also been carried out [10–13]. However, little work has been done on the thermal behaviour of Cr_2O_3 doped mixture of 2:1 molar $CaCO_3$: SiO₂, although the above mix is relevant for the synthesis of dicalcium silicate, an important mineral constituent of clinker.

This work aims to evaluate the thermodynamic and kinetic parameters of the decomposition of $CaCO_3$ in Cr_2O_3 doped 2:1 molar $CaCO_3$ -SiO₂ mixture and on the early formation of dicalcium silicate phase. From the industrial point of view, the study is also important since the chromium acts as a mineralizer in the early formation of cement constituents [10, 13] and accelerates the assimilation of CaO and SiO₂.

2. Experimental details

2.1. Materials and sample preparation

To the 2:1 molar mixture of reagent grade CaCO₃ and quartz powder (purity > 99.9%), varying amounts of Cr₂O₃ (0.1 to 5%) were added. The resulting mixtures after thorough mixing, grinding and passing through a 100 μ m sieve, were shaped in the form of nodules with small amounts of distilled water. The samples after drying at 100 \pm 5° C (2 h) were tested for quantitative estimation of CaCO₃ to ensure complete homogenization. These dried samples were stored for the experimental work.

2.2. Thermal analysis

The measurements were made by Mettler thermal analyser (TA-1), which simultaneously records the differential thermal analysis (DTA) differential thermal gravimetric (DTG) and thermal gravimetric (TG) curves. The samples (60 mg) were heated to 1450° C at a rate of 8° C min⁻¹ in a platinum crucible of the thermal analyser. α -Al₂O₃ (previously burned to 1500° C for 30 min) was used as the reference material.

The activation energy (E_a) of CaCO₃ decomposition was calculated from the DTG curve [14]. The enthalpy (ΔH) and the shape index were determined from the DTA curve [15, 16].

2.3. X-ray diffraction studies

The samples for analysis were powdered to pass through a $45\,\mu\text{m}$ sieve and pressed into a sample holder. The instrument used was Philips model PW 1120. The diffraction patterns were recorded using copper target and nickel filter.

2.4. Examination of the intermediate phases

The samples in the form of nodules were heated in a quench furnace at the rate of 8° C min⁻¹ in a platinum bucket to the temperature where the DTA peak ends, retained for 30 min at that temperature and immediately quenched in liquid nitrogen. Thus the likelihood of the reversibility of the reaction was prevented.

2.5. Estimation of free lime

The free lime in the final products (obtained after heating to the final DTA peak temperature for 2h) was estimated by titrating the ethylene glycol extract against standard HCl [17].

3. Results and discussion

A broad exotherm in the DTA curve was observed for all samples in the region 100 to 200° C (Fig. 1), which could be assigned to heat capacity changes since no features are observed in the DTG curve. An endothermic peak at 575° C due to $\alpha - \beta$ quartz transformation is not influenced by the presence or concentration of the dopant. The initial, peak and termination temperatures (T_i , T_d and T_f respectively) of the DTG peak

*Author to whom all correspondence should be addressed.

[‡] Present address: Scientist, National Council for Cement and Building Materials, M-10, NDSE II, New Delhi 110048, India.

 Figure 1 Thermal curves of (a) $2CaCO_3$:

 SiO₂; (b) $2CaCO_3$: SiO₂ + 0.1% Cr_2O_3 ;

 (c) $2CaCO_3$: SiO₂ + 0.5% Cr_2O_3 ; (d)

 $2CaCO_3$: SiO₂ + 1% Cr_2O_3 ; (e) $2CaCO_3$:

 SiO₂ + 5% Cr_2O_3 (---) DTG curve,

 (---) DTA curve.

for decomposition of CaCO₃ and the activation energy (E_a) are given in Table I. The enthalpy (ΔH) and shape index (Fig. 2) determined from the DTA curves are also given in the table. The dopant reduces the values of T_i , T_d and T_f but the effect of concentration variation is not significant. As the amount of dopant increases from 0.1 to 1.0%, the E_a and ΔH values progressively decrease, but for 5% concentration these values show an increase. The shape index shows an increasing trend with increasing concentration of the dopant and the value of the reaction kinetics approaches one.

The thermal curves of these samples show an exotherm at 1210° C, which could be attributed to the transformation of quartz into cristobalite and formation of some β and γ -C₂S phases. This is confirmed by the X-ray diffraction (XRD) pattern of the liquid nitrogen quenched sample heated to 1220° C (with 30 min retention).

0.1% doped Cr₂O₃ sample gives an exothermic peak

TABLE 1* Thermal analysis data of Cr_2O_3 doped $CaCO_3$: SiO₂ (2:1) system

Concentration of Cr_2O_3 by weight in $CaCO_3: SiO_2$ (2:1) system	Temperatur	Exothermic peak					
	Threshold (T_i) (°C)	Peak (T_d) (°C)	Termination $(T_{\rm f})$ (° C)	Activation energy $E_{\rm a}$ (kJ mol ⁻¹)	Enthalpy ΔH (kJ mol ⁻¹)	Shape index from DTA	observed by DTA after decomposition of CaCO ₃ (° C)
0.0	740	885	910	247	160	0.143	1425
0.1	655	860	885	225	146	0.250	1420 1440
0.5	680	860	900	216	142	0.307	1410
1.0	680	860	890	202	139	0.360	1400 1420
5.0	700	870	890	210	156	0.419	1420

*An endotherm at 575° C and an exotherm at 1210° C comon to all curves are not given in the table.

Figure 2 Shape index of the decomposition peak (DTA).

at both 1420 and 1440°C. The sample heated to 1430°C (30 min retention) and quenched in liquid nitrogen shows the presence of β and γ -C₂S phases with high free lime as discerned by XRD. The same mix on heating to 1450°C (30 min retention) gives mostly γ -C₂S and small amounts of β -C₂S phases. The mix on firing for 1 h at 1450°C gives the same pattern with a constant value of free lime (0.8%).

0.5% Cr₂O₃ gives an exothermic peak at 1410° C. The sample heated to 1420° C and quenched in liquid nitrogen gives again a mixture of β and γ -C₂S phases with an increase in β -C₂S phase. Longer heating of the sample at this temperature does not change the XRD pattern or the free lime content (0.6%). 1% Cr₂O₃ gives two exotherms at 1400 and 1420° C and the liquid nitrogen quenched sample heated at 1410° C (30 min retention) gives β -C₂S phase along with small amounts of free lime (0.5%) and Cr₂SiO₄. This is inferred from the increase in the intensities of peak for free lime at d nm 0.24. This position is also reported for Cr₂SiO₄ along with other d values (0.27, 0.16 and 0.20 nm). γ -C₂S phase is not observed. This is in accordance with the study done by Pashchenko *et al.* [18]. DTA of 5% Cr₂O₃ doped sample gives an exotherm at 1420° C. XRD pattern of the liquid nitrogen quenched sample gives the most predominant β -C₂S phase along with small quantity of α' -C₂S phase. Some of CaCrO₄ and Cr₂SiO₄ are also formed as discerned from the lines of the XRD pattern. Free lime content remains the same (0.5%). The final products so formed are given in Table II. The XRD pattern of the phases formed at the final DTA peak temperature are shown in Fig. 3.

Fig. 4 shows the ratio of phases $(\gamma - C_2 S/\beta - C_2 S)$ formed at 1450° C by addition of the different percentage of Cr₂O₃ dopant (XRD line intensity ratio has been used). It is clear from the figure that ratio of γ to β dicalcium silicate phase decreases with increasing percentage of chromium oxide.

4. Conclusion

Smaller concentration of Cr₂O₃ (0.1%) favours the formation of γ -C₂S phase. Higher percentages (0.5 to 5%) lead to the formation of the more desired β -C₂S phase. 1% Cr₂O₃ is found to be most effective in the decomposition of CaCO₃ (minimum activation energy) and formation of β -C₂S with complete elimination of γ -C₂S phase. 5% Cr₂O₃ gives most predominantly β -C₂S phase along with some α' -C₂S, CaCrO₄ and Cr₂SiO₄. This implies that Cr³⁺ causes a hole defect by replacing Ca²⁺ and Si⁴⁺ ions from the C₂S lattice. The temperature of β -C₂S formation is not affected by any concentration of Cr₂O₃.

Acknowledgement

The authors are thankful to Dr H. C. Visvesvaraya, Chairman and Director General, National Council

Figure 3 X-ray diffraction of chromium doped dicalcium silicate phase: A = γ -C₂S; B = β -C₂S; C = free lime; D = CaCrO₄; E = Cr₂SiO₄; F = α' -C₂S.

TABLE II Products formed at the various exothermic peaks (observed by DTA) of thermal curves as discerned by X-ray diffraction

Concentration of Cr_2O_3 (%) by weight in $CaCO_3: SiO_2$ (2:1)	Exothermic peaks as shown by DTA (°C)	Compounds identified by XRD	Corresponding <i>d</i> values (nm)	d values as per the ASTM cards (JCPDS values)*
0.0	1425	β -C ₂ S (most predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.278, 0.2608
		γ -C ₂ S (predominant)	0.430, 0.404, 0.381, 0.301	0.432, 0.405, 0.381, 0.301
		free lime (high)	0.277, 0.240, 0.170, 0.145	0.2778, 0.2405, 0.170, 0.145
0.1	1420	γ -C ₂ S (most predominant)	0.430, 0.404, 0.381, 0.301	0.430, 0.404, 0.381, 0.301
		β -C ₂ S (predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		free lime (high)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145
	1440	γ -C ₂ S (most predominant)	0.430, 0.404, 0.381, 0.301	0.430, 0.404, 0.381, 0.301
		β -C ₂ S (predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		free lime (0.8%)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145
0.5	1410	β -C ₂ S (most predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		γ -C ₂ S (most predominant)	0.430, 0.404, 0.381, 0.301	0.430, 0.404, 0.381, 0.301
		free lime (0.6%)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145
1.0	1400	β -C ₂ S (most predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		γ -C ₂ S (small amount)	0.430, 0.404, 0.381, 0.301	0.430, 0.404, 0.381, 0.301
		free lime (small amount)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145
	1420	β -C ₂ S (most predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		CaCrO ₄ (small amount)	0.362, 0.288, 0.268, 0.238	0.362, 0.288, 0.268, 0.238
		free lime (0.5%)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145
5.0	1420	β -C ₂ S (most predominant)	0.280, 0.274, 0.277, 0.261	0.280, 0.274, 0.277, 0.261
		α' -C ₂ S (small amount)	0.273, 0.266, 0.248, 0.206	0.273, 0.266, 0.2489, 0.207
		CaCrO ₄ (small amount)	0.362, 0.288, 0.268, 0.238	0.362, 0.288, 0.268, 0.238
		Cr ₂ SiO ₄ (small amount)	0.240, 0.270, 0.254, 0.204	0.240, 0.270, 0.254, 0.204
		free lime (0.5%)	0.277, 0.240, 0.170, 0.145	0.277, 0.240, 0.170, 0.145

*ASTM X-ray Powder Diffraction Files.

for Cement and Building Materials, New Delhi for providing research facilities for one of the authors (VKM) to pursue his PhD studies.

References

- T. SAKURAI, T. SATO and A. YOSHINAGA, in Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo Vol. 1 (Cement Association of Japan, 1968) p. 300.
- 2. W. KURDOWSKI and A. SZUMMER, Silicates Ind. 33(6) (1968) 183.
- 3. V. E. KAUSHANSKII, Y. M. BUTT and V. V. TIMA-SHEV, Tr. Mosk. Khim Tekhnol Inst. 50 (1966) 92.
- 4. K. E. FLETCHER, Trans. Brit. Ceram. Soc. 64(8) (1965) 377.
- N. A. TOROPVE, in Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo (Cement Association of Japan, 1968) p. 49.
- 6. J. A. IMLACH, Ceram. Bull. 54(5) (1975) 519.

- H. HORNAIN, Rev. Mater. Constr. Travel. Publ. Nos 67172 (1971) 203.
- K. AKATSU, K. MAEDA and I. IKEDA, General Meeting Cement Association, Japan (Cement Association of Japan, 1970) Rev. 24 p. 20.
- H. TERAMOTO and T. KASAGAWA, German Offen 20(43) 749 K1 80b (1971).
- 10. P. FIERENS and J. P. VERHAEGEN, J. Amer. Ceram. Soc. 55(6) (1972) 309.
- A. I. BOIKOVA, in Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo (Cement Association of Japan, 1968) p. 234.
- 12. S. N. GHOSH, J. Mater. Sci. 13 (1978) 2739.
- 13. Idem, in Proceedings of the 7th International Symjposium on the Chemistry of Cement, Paris (Septima, Paris, 1980) 12.
- 14. N. G. DAVE and S. K. CHOPRA, Z. Physik Chem. Neue folge Bd 48, Heft 5/6 (1966) 257.
- 15. D. M. SPEROS and R. L. WOODHOUSE, J. Phys. Chem. 72 (1968) 2846.
- 16. H. E. KISSINGER, Anal. Chem. 29(11) (1957) 1702.
- 17. M. P. JAVELLANA and I. JAWED, Cem. Concr. Res. 12 (1982) 399.
- A. A. PASCHENKO, E. A. STARCHERSKAYA and L. I. KUSCH, Dopov, Akad, Nauk, Ukr RSR Ser. B. Geol. Khim Biol, Nauki 1 (1978) 42.

Figure 4 Ratio of γ -C₂S/ β -C₂S against concentration of dopant.

Received 27 June and accepted 15 July 1985